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1. Introduction

The search for realistic string compactifications can rely today on an impressive theoretical

toolbox (for recent reviews and references to the original literature, see e.g. [1 – 3]). Two

very important ingredients, whose understanding is steadily progressing, are fluxes and

localized sources. In their different manifestations, connected by string dualities, they play

a rôle in all ten-dimensional string theories and also in M-theory, whose field-theory limit

is eleven-dimensional supergravity.

As is well known, fluxes are the (quantized) cohomologically non-trivial parts of p-form

field strengths in the compact internal space. In each ten-dimensional string theory, or its

effective ten-dimensional supergravity, we can consider general systems of fluxes associated

to the available classical degrees of freedom.1 For example, in the Neveu-Schwarz-Neveu-

Schwarz (NSNS) sector of type-II theories and in the heterotic theory, we can consider

fluxes of the 3-form field strength H. In type-II theories, we can consider fluxes of the

different Ramond-Ramond (RR) p-form field strengths G(p) (p even for type-IIA, odd for

1The various string dualities, and their counterparts in the effective supergravities, suggest the existence

of more general ‘non-geometric’ fluxes: we will neglect here, for simplicity, this interesting generalization.

For a recent review see [4].
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type-IIB). In the heterotic theory, we can consider magnetic fluxes associated with the

field strength F of the E8 × E8 or SO(32) gauge group. In type-II theories, we can con-

sider magnetic fluxes associated with the gauge field strengths F localized on D-branes.

Finally, in all ten-dimensional string theories we can consider the so-called geometric (or

metric) fluxes, associated with the internal components of the spin connection ω (suit-

ably anti-symmetrized and with curved-space indices), equivalent to coordinate-dependent

compactifications with a Scherk-Schwarz twist. This classification can be extended to M-

theory, or its effective eleven-dimensional supergravity: in such a case the available fluxes

are those of the 4-form F (4), plus geometric fluxes and possible fluxes for localized gauge

field strengths on M-branes.

Fluxes are in general accompanied by localized sources, extending over a submanifold

of the whole ten-dimensional (eleven-dimensional for M-theory) space-time. For example,

fundamental strings (NS1-branes) and NS5-branes are the electric and magnetic sources

of the NSNS 2-form potential B and its dual. Analogously, Dp-branes are the electric

and magnetic sources for the RR (p + 1)-form potentials C(p+1) and their duals. KK-

gravitons and KK5-monopoles are the electric and magnetic sources for geometric fluxes

in ten dimensions. In M-theory, M2-branes and M5-branes source the 3-form A(3) and its

dual 6-form, whilst the magnetic source for geometrical fluxes are KK6-monopoles. In all

theories, we may also need to include non-dynamical objects such as orbifold/orientifold

planes in the general set of localized sources.

The aim of this paper is to provide a unified and generalized description of the consis-

tency conditions for string compactifications with fluxes and localized sources, extending

the presently known results. In particular, we will concentrate on the so-called localized

Bianchi Identities (BI), which enforce on the effective action those non-anomalous local

invariances of the underlying compactified theory that are associated with localized gauge

fields. Their rôle is similar, but still less generally understood, to the rôle of the bulk BI,

associated with the local symmetries of the metric and of the p-form potentials in the NSNS

and RR sectors. The integrability conditions of the bulk and localized BI constrain the

allowed combinations of fluxes and localized sources, and play a crucial rôle in enforcing

the local symmetries (gauge invariance, supersymmetry) in the effective four-dimensional

theory. These conditions are particularly important when we cannot get a full-fledged so-

lution of the higher-dimensional equations of motion, and we must rely on an effective field

theory approach to explore the consequences of different systems of fluxes and localized

sources, making sure that the local symmetries of the underlying theory are duly respected.

The best known localized BI is the one associated with the Freed-Witten (FW)

anomaly [6], which provides a constraint on the flux H, i.e. the cohomologically non-trivial

part of the NSNS 3-form H, in the presence of Dp-branes:

H ∧ [πp] = 0 ⇔

∫

γ3⊂πp

H = 0 ,

where πp denotes the Dp-brane world-volume, [πp] the (9−p)-form Poincaré dual to it and γp

is a generic p-cycle. It was recently shown, on the basis of complementary arguments [7, 8],
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that a more general localized BI holds in the presence of non-trivial geometrical fluxes ω:

ω [πp] = 0 , H + ωF = 0 ,

where the overline has the same meaning as before. The FW condition plays also a crucial

rôle in the attempts at embedding the classification of brane charges within K-theory,

see e.g. [9] for a review and references to the original literature. Following this approach

interesting results have been obtained recently in [10 – 12]. However, it seems that K-theory

is not general enough to give a complete description of branes and flux charges. Indeed,

K-theory seems to be incompatible with S duality [13]. In this paper we will adopt instead

an effective field theory approach, exploiting the power of the supergravity description. We

will be able to further generalize the above constraints to others that involve RR fluxes on

NS5-branes or KK5-monopoles,

[ν5] ∧ G = 0 ⇔

∫

γp⊂ν5

G(p) = 0 ,

and

[κ5]
ξ Gξ = 0 ⇔

∫

γp⊂κ5

G
(p+1)
ξ = 0 ,

where ξ is the fibered circle of the KK5-monopole and more details on the notation will be

given later in the text. We will also show that a similar condition holds for RR fluxes on

Dp-branes:
∫

γp⊂πp

G(p) = 0 .

We have already stressed that all the above localized BI are instrumental for enforcing

the local symmetries of the effective four-dimensional theory. The generic effect of fluxes

is to gauge some axionic symmetries, whereas Euclidean (instantonic) branes generically

induce in the effective action terms that break some of these axionic symmetries. As already

realized in some special cases (see, e.g., [14 – 16]), and as we will discuss in more general

terms in this paper, localized BI prevent this clash from happening.

The previous considerations on localized BI were implicitly assuming free (albeit pos-

sibly intersecting) branes. It is however known [17] that the FW anomaly-cancellation

condition can be relaxed in the presence of branes ending on the ‘anomalous’ brane, and

that this may lead to instabilities such as the decay of N D(p − 2)-branes into N units of

H-flux via an instantonic Dp-brane. In this paper we generalize our new localized BI in

a similar way, and identify the new corresponding instabilities that arise. We also study

the rôle of these configurations when dealing with domain walls interpolating between two

string vacua.

The rest of this paper is organized as follows. In section 2 we first recall the localized

BI associated with the Freed-Witten (FW) anomaly, which provides a constraint on the

NSNS 3-form flux H, and review how by T-duality we can derive a similar localized BI

involving also the geometrical flux ω. Then we make use of S-duality to infer the existence

of additional new localized BI, valid for NSNS localized sources (NS5-branes and KK5-

monopoles) and constraining RR fluxes. In section 3 we show how all the above localized
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BI have a common origin from M-theory. We also provide some examples of how the new

localized BI are essential for ensuring gauge invariance of the effective action, which could

be spoiled by the simultaneous presence of fluxes and Euclidean branes inducing instanton

effects. In section 4 we generalize our considerations to the case of branes ending on branes.

We discuss the new sources of instabilities that arise from the new allowed configurations

of branes and fluxes. We stress the importance of these configurations in connecting string

vacua with different branes and fluxes (and geometry as well). In section 5 we provide the

full derivation of all constraints directly in 10D, using the bulk BI. In the final section we

summarize our conclusions.

2. D-branes on flux backgrounds

In type-II string theories, Dp-branes are the electric and magnetic sources of the Ramond-

Ramond (RR) (p + 1)-form potentials C(p+1) and their duals, in the same way as funda-

mental strings and NS5-branes are the electric and magnetic sources of the Neveu-Schwarz-

Neveu-Schwarz (NSNS) 2-form potential B and its dual. In the effective field theory, this

fact is manifest in the Wess-Zumino (WZ) part of the Dp-brane action,

SWZ =

∫

πp

C eF , (2.1)

where πp is the (p + 1)-dimensional world-volume of the brane, C is a convenient way

of combining all the RR potentials into a single polyform, and F = F − B is the brane-

localized gauge field. If we assume the ten-dimensional space-time to be of the form R×X9,

where X9 is the nine-dimensional manifold associated with the space coordinates, then πp

may extend along the time direction, wrapping a p-dimensional sub-manifold of X9, or be

localized in time, wrapping a (p + 1)-dimensional sub-manifold of X9: in the latter case

the Dp-brane is also called an instantonic or Euclidean Dp-brane. Since the Dirac-Born-

Infeld (DBI) part of the brane action is proportional to its volume, the brane wants to

shrink. Therefore, to be stable the brane needs to wrap a non-contractible cycle. For this

reason brane charges are usually classified by homology. However, at variance with the

usual minimal couplings between sources and gauge fields, the brane action depends also

on the localized gauge field F , which encodes the tangent2 degrees of freedom of the open

strings ending on the Dp-branes. Because of this a Dp-brane does not couple only to the

RR (p+1)-form, but also to lower-rank potentials. Indeed, eq. (2.1) reads, more explicitly:

SWZ =

∫

πp

[

C(p+1) + C(p−1) ∧ F +
1

2
C(p−3) ∧ F ∧ F + . . .

]

. (2.2)

To account for this effect, K-theory has been proposed to classify D-brane charges instead

of homology [18, 19].

If πp is the (p + 1)-dimensional sub-manifold of R × X9 occupied by the brane world-

volume, we call [πp] the (9 − p)-form Poincaré dual to πp. The requirement that πp is a

2The normal ones, which describe the position of the branes, arise instead from the pull-back of the bulk

fields on the branes, which we keep implicit in our notation.
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cycle implies, via Stokes theorem, that

∂πp = 0 ⇔ d[πp] = 0 , (2.3)

which is the generalization of the Ward identity to extended objects. As mentioned before,

the DBI part of the brane action is proportional to its volume, so that stability requires

the cycle to be non-trivial, i.e.

πp 6= ∂π′
(p+1) ⇔ [πp] 6= d[π′

(p+1)] , (2.4)

for every (p + 1)-cycle π′
(p+1).

However, the D-brane “current” is modified by the presence of the localized gauge field

F , and eq. (2.3) becomes

d
(

[πp]e
F

)

= 0 . (2.5)

This is expected when looking at the Bianchi Identities (BI) for the RR gauge fields. Since

Dp-branes couple electrically to the RR (p + 1)-form potentials C(p+1) [eq. (2.2)], they act

as magnetic sources for the dual fields C(7−p), and appear in the BI of the (8− p)-form RR

field strengths3 G(8−p):

dG(8−p) + H ∧ G(6−p) =
∑

q

Qp(πq) , (2.6)

where H is the 3-form NSNS field strength and Qp(πq) is the Dp-brane charge (density) of

the Dq-brane wrapping the cycle πq, i.e. the projection over (9− p)-forms of the Dq-brane

charge [πq]e
F . In the absence of H, the second term on the l.h.s. of eq. (2.6) vanishes and

eq. (2.5) follows from the closure of the external derivative (dd = 0).

We can understand the meaning of eq. (2.5) by expanding the exponential. By pro-

jecting over p-forms we get two conditions:

d[πp] = 0 , dF = 0 . (2.7)

The first is the usual homology condition (2.3), the second is nothing else than the localized

BI for the gauge fields on the Dp-branes.

However, eq. (2.5) is not yet complete. For non-trivial H fields, we get an extra term

in eq. (2.5), an extra source. It is a general fact that, in type-II string theory, external

derivatives are always dressed with an H contribution. If we define the modified external

derivative

dH ≡ d + H∧ ,

then we can rewrite the RR BI of eq. (2.6) in the short-hand notation

dHG = QR . (2.8)

3Notice that we adopt here the dual formulation for the RR forms, not the democratic one, following

the conventions of refs. [20, 21].
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There is no real advantage in this notation as long as we do not define some useful property

for the modified derivative operator dH . In the absence of magnetic sources for the NSNS

2-form (i.e. NS5-branes), the BI for H,

dH = 0 ,

implies

dHdH = 0 .

Since, as it is the case for the usual external derivative, dH is closed, we can try to construct

a “twisted” cohomology starting from this modified derivative. The corresponding modified

classification for D-brane charges is usually called twisted K-theory [22]. We can now use

the closure of dH and act with it on both sides of eq. (2.8). This gives the condition

dH

(

[πp]e
F

)

= 0 .

By expanding this equation we recover the first condition of eq. (2.7), while the second one

gets modified into4

dHF = dF + H = 0 . (2.9)

It can be easily checked that this is the correct modified BI for the D-brane gauge fields,

by solving for F . In the absence of fluxes the result reads

F = dA − B = F − B ,

which is the correct (gauge-invariant) combination entering the D-brane action. Therefore

the NSNS field H is a magnetic source for the localized gauge fields F on the D-brane. Since

the first term in eq. (2.9) is a total derivative, H calculated on the D-brane world-volume

must be trivial in cohomology, i.e.

H ∧ [πp] = 0 ⇔

∫

γ3⊂πp

H = 0 , (2.10)

which corresponds to the cancellation of the Freed-Witten (FW) anomaly5[6]. Here and in

the following, we denote with H the cohomologically non-trivial part of H (similarly for

other fluxes6), and with γp a generic p-cycle. The constraint of eq. (2.10) can be relaxed

only if other sources for the localized gauge fields are added. This is the case [23, 24] when

other D(p − 2)-branes end on πp. As shown in [17], this also allows normal Dp-branes to

decay into instantonic D(p+2)-branes supporting an H flux. In the following we will focus

4For simplicity, here and in the following we will consider trivial background values for the localized

field strenghts (F for Dp-branes, K for NS5-branes, etc.). The latter can easily be included by taking into

account their contributions to the solutions of the Bianchi identities for the NSNS and RR forms.
5The actual constraint reads H

˛

˛

πp

+ W3(πp) = 0, but we will restrict ourselves to the cases where πp is

a Spinc manifold, whose third Stiefel-Whitney class W3(πp) vanishes. See [5] for a discussion of this more

general case in a context related to ours.
6As for fluxes also for localized sources one should distinguish between the local contribution to the BI

and the associated cohomological charge. To keep notation light we use the same notation for the two cases

as it should be clear from the context which of the two applies.
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our attention on free brane configurations, where branes can intersect but not end on each

other. We will return on the interesting case of branes ending on branes later, in section 4.

The importance of the RR BI in type-II string compactifications is well known. In-

tegrating eq. (2.6) on a compact space gives a highly non-trivial constraint — Gauss law

implies the cancellation of the total charge. This condition is crucial for the effective

theory to be consistent, it indeed enforces that local symmetries, such as supersymmetry

and gauge invariance, be realized both at the classical and at the quantum level (via the

cancellation of anomalies, see e.g. [25]).

It has recently been shown [7, 8] that the conditions coming from the localized BI of

eq. (2.10) are equally important. When both fluxes and D-branes are present, the bulk BI

alone are not enough to ensure the consistency of the effective theory. The way localized

BI enforce gauge invariance in the effective theory is multiple. For example, in N = 1 type-

IIA compactifications to four dimensions with non-trivial 3-form flux, the superpotential

W receives a contribution of the type (see e.g. [26, 21])

W ⊃ −i

∫

X6

H ∧ Ωc ⊃

∫

X6

H ∧ C(3) ,

where Ωc is the “complexified” complex structure, whose imaginary part is the RR 3-form

potential C(3), and X6 is the compact six-dimensional internal space. This superpotential

term lifts some of the shift symmetries associated to the axions C(3). On the other hand,

a D6-brane wrapping a cycle π6 induces a Stückelberg gauging of the form

DµC(3) = ∂µC(3) − [π6]Aµ ,

where A is the U(1) gauge field living on the D6-brane. This means that under the U(1)

of the D6-brane the axions transform as

δλC(3) = [π6]λ .

For the effective action to be consistent, we must require the gauge invariance of the

superpotential,7

δλW ∝

∫

X6

H ∧ δλC(3) = λ

∫

X6

H ∧ [π6] = λ

∫

γ3

H = 0 , γ3 = X6 ∩ π6 ,

which is realized by the FW condition (2.10). Analogously, in the presence of fluxes the

cancellation of gauge anomalies in the effective theory is realized only when both bulk and

localized BI are satisfied [8]. Finally, it was shown in [14] that the condition (2.10) is also

crucial for the compatibility of non-perturbative effects and flux-induced gaugings. Indeed,

in N = 2 compactifications there would be a clash between Euclidean D2-brane instantons

(π2), which break the shift symmetry of C(3) via terms [27] such as

exp

(

−

∫

π2

[

Re(i e−ΦΩ) + iC(3)
]

)

,

7Strictly speaking, the superpotential and the Kähler potential could be invariant up to a Kähler trans-

formation, but this subtlety does not play a rôle in the present considerations.
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and N = 2 gaugings induced by the H flux:

(G(4))2 = (dC(3) + H ∧ C(1))2 .

Again, the condition (2.10) prevents this clash from happening. Analogous mechanisms

can be shown to hold also in type-IIB compactifications and for different D-brane setups.

We can now ask whether condition (2.10) is actually the only one or there are more, in

view of the fact that string dualities mix different kind of fluxes with themselves and with

geometry itself, as well as different kinds of branes. Unfortunately, from the mathematical

point of view K-theory does not seem to fit with S-duality [13] (see also [9] and references

therein). This could mean either that K-theory is not enough to classify brane charges

with general setups of fluxes, or that S-dualities do not hold exactly. We will study the

interplay between string dualities and localized BI from the effective field theory point of

view, showing the existence of more constraints relating localized sources and fluxes, in

agreement with S-duality. We start by discussing the T-duality case, where results in this

direction already exist, then move to S-duality.

2.1 T duality

Under T-duality, a Dp-brane is mapped into a D(p+1)-brane or D(p−1)-brane, depending

on whether the dualized direction is orthogonal or parallel to the brane, respectively (when

it is oblique the brane is mapped into a magnetized D(p + 1)-brane). Analogously, the

RR p-form potentials are mapped into (p± 1)-form potentials. Finally, the NSNS sector is

mapped into itself, with the metric mixing with the 2-form potential B, as a result of the

interchange between KK and winding modes (see [28]). As shown in [29], if the T-dualized

direction k is parallel to the flux Hijk, this is mapped into a twist of the geometry ω k
ij ,

which is equivalent to a vacuum expectation value for the spin connection — a Scherk-

Schwarz or geometric flux [30]. On toroidal compactifications, the geometric flux ω can be

easily taken into account by modifying the external derivative with a torsion term, i.e. by

making the replacement

d → d + ω .

In the absence of KK-monopoles, whose effects have been recently discussed in [31], ω

satisfies the consistency constraint [30]:

ω ω ≡ ω k
[ij ω m

l]k = 0 . (2.11)

When both ω and H fluxes are considered, the effective external derivative becomes

dH → D = d + ω + H∧ , (2.12)

which is closed under the considered T-duality. However, if we keep using T-dualities, we

eventually end up dealing with some ‘non-geometric’ compactifications (for a recent review

and references, see e.g. [4]). We could generalize the external derivative also to these cases,

to have a completely T-duality-invariant external derivative, but we will restrict ourselves

– 8 –
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here to the geometric case, where the effective field theory is better under control. Because

of the condition (2.11), the closure of the modified external derivative

DD = 0 , (2.13)

follows by imposing the modified NSNS BI

(d + ω)H = 0 .

Analogously, the RR BI now read:

DG = QR , (2.14)

i.e.:

(d + ω)G(8−p) + H ∧ G(6−p) =
∑

q

Qp(πq) . (2.15)

By applying again D on eq. (2.15), and using eq. (2.13), we then get the modified localized

BI

D([π]eF ) = 0 , (2.16)

which after expanding gives

(d + ω)[πp] = 0 , (d + ω)F + H = 0 , (2.17)

or, equivalently,

ω [πp] = 0 , H + ωF = 0 ,

where we momentarily included also the contributions from magnetic fluxes (F). As shown

in [8] (see also [32]), the geometric flux modification in the first equation takes into account

the fact that twisting the boundary conditions in the compactification changes the topology

of the manifold, in particular it removes some of the allowed cycles that cannot be used

anymore to wrap branes on them. The second modification is instead the usual modification

of the BI due to Scherk-Schwarz fluxes.

We can repeat the whole analysis of the compatibility between ω fluxes and D-branes,

to find the same qualitative results as for the H fluxes — in all cases the conditions (2.16) are

crucial for the effective theory to be consistent, see e.g. [8]. T-duality thus mixes H fluxes

with torsion in the geometry, providing a geometric interpretation of the FW condition

in the dual description. Roughly speaking, stable Dp-branes must wrap manifolds that

are non-trivial with respect to the ‘twisted’ cohomology defined by the modified external

derivative D of eq. (2.12).

2.2 S duality

We now turn to S-duality. This duality acts more dramatically on fields and sources,

mixing the RR and NSNS sectors. The type-IIB theory is self-dual under S-duality: RR

fields either are self-dual or are mapped into NSNS fields, and vice-versa. The same happens

for branes: D-branes either are self-dual or are mapped into NSNS sources (fundamental

strings and NS5-branes). In the type-IIA theory, S-duality controls the uplift to M-theory,

– 9 –
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where again the RR and NSNS sectors of type-IIA are mixed/unified: the 10D metric, the

RR 1-form and the dilaton come from the 11D metric, while the RR 3-form and the NSNS

2-form come from the 11D 3-form. The condition (2.16), on the other hand, is not invariant

under S-duality. This suggests that there should be also another condition involving RR-

fluxes and NSNS-sources. We give here a short argument supporting the existence of this

new condition and postpone the full derivation to section 5, after discussing its M-theory

origin in the next section.

To get a non-trivial condition on NSNS sources, we need to include them in the BI,

(d + ω)H = QH =
∑

[ν5] ,

(d + ω)ω = QKK =
∑

[κ5] ,

where ν5 is the world-volume of NS5 sources and κ5 of KK5-monopole sources [31]. Because

of this, our external derivative operator is no longer closed,

DD = QNS , (2.18)

where QNS = QKK + QH is the generic NSNS source term. From here we can understand

the problems in defining a cohomology with such external derivative. If we repeat now the

derivation of the condition (2.16) in the presence of NSNS sources, by acting on eq. (2.14)

with the operator D we get, using also eq. (2.18):

DDG = QNS ∧ G = DQR .

In the absence of RR sources (and more generally for free NSNS sources) we have

[ν5] ∧ G = 0 ⇔

∫

γp⊂ν5

G(p) = 0 , (2.19)

and

[κ5]
ξ Gξ = 0 ⇔

∫

γp⊂κ5

G
(p+1)
ξ = 0 , (2.20)

where ξ is the fibered circle of the KK5-monopole (see the next section) and the contraction

of indices in eq. (2.20) reads

[κ5]
ξ Gξ ≡

1

3!(p − 1)!
[κ5]

ξ
i1i2i3

G
(p)
ξ j1...jp−1

dxi1 ∧ dxi2 ∧ dxi3 ∧ dxj1 ∧ · · · ∧ dxjp−1 . (2.21)

In the type-IIB theory, and for the RR 3-form field strength, the condition of eq. (2.19) looks

indeed like the S-dual of eq. (2.10), with NSNS and RR, fluxes and sources interchanged.

In the next section we will show how eqs. (2.10), (2.19) and (2.20) have a common

geometrical origin in M-theory, and how indeed they are connected via string dualities. In

section 4 we will extend the analysis to non-free branes, discussing flux-induced instabilities.

Finally, in section 5 we will give a different derivation of the various conditions along the

lines of the argument sketched above.
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3. Localized BI from M-theory

Besides describing the strongly coupled limit of the type-IIA theory, M-theory gives a

more geometric interpretation and an explicit ‘unification’ of the two distinct sectors of

the theory (RR and NSNS). As we will show below, M-theory also helps explaining the

origin of the localized BI discussed before, providing the proof that the conjectured S-dual

condition in eq. (2.19) must also hold.

D-branes in type-IIA arise from brane-like solitonic objects in M-theory. In particular,

D2-branes come from the dimensional reduction of M2-branes (the sources electrically

coupled to the M-theory 3-form A(3)). D4-branes arise from M5-branes (the magnetic

duals of the M2-branes) wrapping the 11th dimension, which is taken to shrink to zero size

in the weak string coupling limit. D0 and D6-branes arise instead as electric and magnetic

sources of the eleven-dimensional (11D) metric.

Before discussing how conditions (2.10), (2.19) and (2.20) are connected via S- and

T-dualities, and how M-theory unifies them, it is useful to review the M-theory origin of

the by now well-known localized BI of eq. (2.10).

3.1 D6-branes

In this section we consider the case of D6-branes in the type-IIA theory, which have a

geometrical origin in M-theory, and show explicitly how the corresponding localized BI

arise directly from the 11D M-theory effective action. We start from the following solitonic

solution for the 11D metric of M-theory [33]:

ds2 = −dt2 +

6
∑

m=1

(dxm)2 + ds2
TNUT , (3.1)

where

ds2
TNUT = f−1(r)

[

dr2 + r2dθ2 + r2 sin2 θdφ2
]

+ f(r)
[

dx11 + V
]2

,

and

f(r) =
(

1 +
m

r

)−1
, V = m(1 − cos θ)dφ .

The metric (3.1) describes a Taub-NUT geometry for a (6+1)-dimensional object where one

of the four transverse dimensions is a circle (x11 ∼ x11+4πm). In the limit in which the size

of this circle shrinks to zero, this geometry describes a (6+1)-dimensional object in 10D,

sourcing a magnetic flux for the 11D graviphoton (from which the name KK6-monopole):

dV = m sin θ dθ ∧ dφ . (3.2)

Since V maps into the RR 1-form potential in the type-IIA limit, the (6+1)-dimensional

object is indeed a D6-brane. How the DBI action for the D6-brane can be recovered from

the compactification of M-theory on the Taub-NUT geometry is discussed in [34 – 36], where

it is also shown that the vector fields living on D6-branes arise from the M-theory 3-form

potential.

A fast way to show how eq. (2.10) arises from this compactification is the following.

The H flux of the type-IIA theory is generated in M-theory by the flux of the 4-form
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field strength F (4), with one leg along the 11th direction. We want to show that the flux

component F
(4)
11mnr, where (m,n, r) are along the D6-brane world-volume, is not compatible

with the metric (3.1). In the case under consideration, the background value for F (4)

on (3.1) reads

F (4) = Hmnr (dx11 + V ) ∧ dxm ∧ dxn ∧ dxr ,

where the last factor arises because the metric is not diagonal. In the absence of M5-branes,

the 11D 4-form field strength F (4) satisfies the BI

dF (4) = 0 . (3.3)

We now want to see what this condition is mapped into, when calculated over the back-

ground of eq. (3.1). Since dV 6= 0,

dF (4) = Hmnr dV ∧ dxm ∧ dxn ∧ dxr = 0 ,

corresponds to requiring that H vanishes on the D6-brane world-volume, i.e. to eq. (2.10).

To make contact with the discussion of the localized BI given in the previous section,

we give now another way of obtaining this condition, which allows us to derive the full set

of BI for the localized vector fields, and to highlight the connection with gauge invariance.

To do this, we follow the method of [35] for deriving the effective DBI action. It is useful

to rewrite the 11D metric in a diagonal form,

ds2 = −dt2 +

6
∑

m=1

(dxm)2 + f−1(r)
[

(ξ(1) − C(1))2 + g̃abdxadxb
]

,

where we kept the dependence on the fields associated to the fluctuations of the metric in

the internal space, in particular the 3 × 3 block g̃ab, whose background value is the flat

metric, and the graviphoton C(1), and we introduced the modified 11th direction

ξ(1) = c
f(r)

m

[

dx11 + m(1 − cos θ)dφ
]

,

which is actually an harmonic 1-form, with c a normalization constant. As was the case

for V , such a form is not closed, and its external derivative gives a self-dual 2-form

ξ(2) = dξ(1) = ⋆4 ξ(2) =
f ′(r)

f(r)
dr ∧ ξ(1) + c f(r) sin θ dθ ∧ dφ ,

which is also harmonic and extends both in the (r, ξ(1)) and in the (θ, φ) directions. The

second term is actually proportional to the magnetic flux (dV ) coming out of the KK6-

monopole. In the type-IIA limit, this flux actually corresponds to the RR 2-form flux G(2)

coming out of the D6-brane and satisfying the BI

dG(2) = [π6] , (3.4)

which identifies the localized 3-form [π6] Poincaré dual to the D6-brane world-volume. The

condition d[π6] = 0 directly follows from eq. (3.4).
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It is convenient to expand F (4) over harmonic forms, in particular we can write:

F (4) = G(4) + ξ(1) ∧ H + ξ(2) ∧ F (2) + . . . (3.5)

where we kept just the components that we will need in the following. As in [35], in

the background (3.1), ξ(1) plays the role of the ‘11th’ dimension, so that the different

polarizations of F (4) can be identified with the type-IIA RR 4-form G(4), the NSNS 3-form

H and the ‘localized’ 2-form gauge fields F on the world-volume of the D6-brane. Eq. (3.3)

then becomes:

dF (4) = dG(4) − ξ(1) ∧ dH + ξ(2) ∧ (dF (2) + H) + · · · = 0 , (3.6)

i.e.

dG(4) = 0 , dH(3) = 0 , dF (2) + H = 0 . (3.7)

The first condition in eq. (3.7) is the RR BI for G(4) in the absence of D4-branes and

with trivial G(2). The non-triviality of G(2) arising from eq. (3.4) has been reabsorbed into

ξ(2) in this frame, i.e. the H term in the third equation. A non-trivial G(2) = dC(1) can be

implemented by considering also the 11D metric fluctuations around the background, since

C
(1)
M ∝ g11M . A topologically non-trivial G

(2)
, on the other hand, may arise by considering

twisted tori where the Scherk-Schwarz parameter ω 11
ab is different from zero [37]: it would

be interesting to check the BI conditions also in the presence of a non-vanishing 11D

geometrical flux.

The second condition in eq. (3.7) is the NSNS BI in the absence of NS5-branes, which

admits the general solution

H = dB + H .

Finally, the last condition in eq. (3.7) is the desired localized BI. The solution of this

BI reads

F = dA + F − B = F − B , (3.8)

provided that H = 0 (on the D6-brane world-volume), i.e. the FW anomaly constraint be

satisfied:

H ∧ [π6] = 0 ⇔

∫

γ3⊂π6

H = 0 .

This derivation makes it clear why, in the DBI+WZ D6-brane action, the fields B and

F always appear in the combination (3.8), which is gauge invariant under the following

transformations:

B → B + dλ(1) , A → A + λ(1) ,

where λ(1) is a generic 1-form gauge transformation. Indeed, it is easy to show that the

way the fields B and F transform under gauge transformations follows directly from the

gauge transformations of the M-theory 3-form potentials. In the absence of fluxes we have

δA(3) = dΛ(2) ,

A(3) = C(3) − ξ(1) ∧ B + ξ(2) ∧ A + . . . ,

Λ(2) = λ(2) + ξ(1) ∧ λ(1) + ξ(2) λ(0) ,

⇒ δA(3) = dλ(2) − ξ(1) ∧ dλ(1) + ξ(2) ∧ (dλ(0) + λ(1)) ,
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hence

δC(3) = dλ(2) , δB = dλ(1) ,

δA = dλ(0) + λ(1) ⇒ δF = dλ(1) ,

so that the combinations F = F − B is invariant.

We have thus shown that the gauge invariance of the D6-brane action follows from the

gauge invariance associated with the M-theory 3-form potential. Moreover, the localized

BI for D6-branes comes from the bulk M-theory BI for F (4). Imposing these BI on the

Taub-NUT solution, the FW anomaly-cancellation constraint follows.

3.2 KK5-monopoles

Now that we have assessed the M-theory origin of the localized BI of eq. (2.10), we can

try to see whether also eqs. (2.19) and (2.20) can be obtained in the same way. As already

observed at the end of section 2 for the type-IIB case, eq. (2.19) is simply the S-dual of the

better known FW anomaly-cancellation condition. Since in the type-IIA limit S-duality

can be achieved by exchanging the role of the 11th dimension with one of the others, we

can check what happens if we perform a different embedding of the Taub-NUT metric (3.1)

in the 11D space-time. In particular, we can consider the KK6-monopole solution in 11D

and identify the 11th dimension with one of its world-volume coordinates instead of the

fibered circle of the Taub-NUT soliton. In this way, in the 10D type-IIA limit, we get

again a KK-monopole solution, which this time will have only five world-volume spatial

dimensions, becoming a KK5-monopole. We can repeat the analysis of the previous section

with the new assumption. The decomposition of the M-theory 4-form then reads:

F (4) = G(4) + ξ(1) ∧ G
(4)
ξ + η ∧ H + ξ(2) ∧ K(2) + . . . ,

where η is the 1-form inside the KK6-monopole (dη = 0) that plays the role of the 11th

dimension, G
(4)
ξ is the type-IIA RR 4-form with one leg on the ξ(1)-monopole direction,

and K(2) is the 2-form field strength localized on the IIA KK5-monopole [38]. Since dξ(1) =

ξ(2) 6= 0, the BI for F (4),

dF (4) = dG(4) − η ∧ dH − ξ(1) ∧ dG
(4)
ξ + ξ(2) ∧ (dK

(3)
ξ + G

(4)
ξ ) + · · · = 0 ,

gives a non-trivial condition on the KK5-monopole world-volume (κ5)

[κ5]
ξ G

(4)
ξ = 0 ⇔

∫

γ3⊂κ5

G
(4)
ξ = 0 . (3.9)

This condition corresponds to eq. (2.20) and is the type-IIA ‘S-dual’ of the FW anomaly-

cancellation condition (2.10). We can convince ourselves of this by T-dualizing the two

conditions (2.10) and (3.9) into the type-IIB theory, where the S-duality dictionary is

more familiar. To do this, notice that in the type-IIA case S-duality has been achieved

by exchanging η and ξ(1) as 11th dimension: we thus want to use these directions for the

T-dualization. We start with eq. (2.10), here ξ(1) was the 11th dimension that we had

already shrunk, so we T-dualize along η, which in this case is a world-volume coordinate.
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If we choose H orthogonal to η it will stay invariant under T-duality, while the D6-brane

is mapped into a D5-brane (π5). Eq. (2.10) goes then into the condition:
∫

γ3 ⊂π5

H = 0 . (3.10)

In the case of eq. (3.9), on the other hand, η was the 11th direction. Then we T-dualize

along ξ(1). G
(4)
ξ maps into G(3), while, as discussed in [34, 39 – 41], the KK5-monopole is

mapped into a NS5-brane ν5. Therefore, under T-duality eq. (3.9) goes into
∫

γ3 ⊂ ν5

G(3) = 0 , (3.11)

which is indeed the S-dual of eq. (3.10) and agrees with eq. (2.19). We may schematically

summarize the result of the web of dualities as follows:
∫

γ3 ⊂κ6

F
(4)
ξ = 0

S1
(ξ)

−−→

∫

γ3 ⊂π6

H = 0
Tη

←−−→

∫

γ3 ⊂π5

H = 0

M IIA IIB
)

S
∫

γ3 ⊂κ6

F
(4)
ξ = 0

S1
(η)

−−−→

∫

γ3 ⊂κ5

G
(4)
ξ = 0

Tξ
←−−→

∫

γ3 ⊂ ν5

G(3) = 0

On the type-IIB side, also eq. (3.11) can be understood as a localized BI. Indeed, by S-

duality, as fundamental strings ending on D5-branes produce a localized 2-form gauge field

F satisfying dF + H = 0, D1-branes (-strings) ending on NS5-branes produce a localized

2-form gauge field K(2) satisfying dK(2) + G(3) = 0.

3.3 M5-branes

A further example is represented by M5-branes, which may generate both D4-branes and

NS5-branes in the type-IIA limit. Consider a M5-brane wrapping the manifold µ5 in the

11D space R×X10, where we take X10 = X9 ×S1. On the world-volume of the brane lives

a self-dual 3-form field-strength K(3) [42, 43], which always enters the M5-brane action in

the gauge-invariant combination

K(3) = K(3) − A(3) .

This suggests that K(3) actually obeys the modified BI

dK(3) + F (4) = 0 ,

so that the following condition follows

F
(4)

∧ [µ5] = 0 ⇔

∫

γ4 ⊂µ5

F (4) = 0 . (3.12)

After compactification, a non-trivial F
(4)

may induce the gauging of the shift symmetries

of the axions coming from A(6), the 6-form dual to A(3), via the term

F (7) = ∂µA(6) +
1

2
F

(4)
∧ A(3)

µ . (3.13)
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The shift symmetries of the A(6) axions can however be broken by M5-instanton contribu-

tions

∼ exp

(

i

∫

µ5

A(6)

)

,

associated with Euclidean M5-branes. The condition (3.12) then prevents the simultaneous

presence of the flux F
(4)

and the M5-brane, when this would produce a clash with gauge

invariance. The importance of eq. (3.12) to avoid inconsistencies between the gauging (3.13)

and M5-instanton contributions has also been discussed nicely in [15] for heterotic M-theory

compactifications.

We can now perform the type-IIA limit in different ways. We can identify the 11th

dimension with one of the directions parallel to F (4) and the M5-brane, in which case

F (4) → H, µ5 → π4 and K(3) → F , or with one of the orthogonal ones, in which case

F (4) → G(4) and µ5 → ν5. So we get
∫

γ3 ⊂µ5

F
(4)
11 = 0

S1

−−→

∫

γ3 ⊂π4

H = 0
Tx

←−−→

∫

γ3 ⊂π5

H = 0

M IIA IIB
)

S
∫

γ3 ⊂µ5

F (4)
x = 0

S1

−−→

∫

γ3 ⊂ ν5

G(4)
x = 0

Tx
←−−→

∫

γ3 ⊂ ν5

G(3) = 0

which shows once again that the conditions (3.10) and (3.11) have the same M-theory

origin, which is indeed mapped into type-IIB S-duality.

From M-theory, we could also choose as 11th dimension a direction that is parallel

to the M5-brane but orthogonal to F (4). In this case the condition in the type-IIA limit

would read
∫

γ4 ⊂π4

G(4) = 0 . (3.14)

Surprisingly, we have obtained a new constraint involving D-branes and RR-fluxes: we will

discuss this type of constraints further in section 5.

A different duality web of constraints between fluxes and branes can be obtained

starting from the condition that M5-branes wrap true cycles in a ‘twisted’ M-theory com-

pactification. Namely, we can require the condition

ω[µ5] = 0 , (3.15)

where ω is a geometrical flux in 11D. If ω does not involve the 11th dimension, the condi-

tion (3.15) maps into the analogous condition for D4-branes [eq. (2.17)]. When instead the

twist involves the 11th dimension, as argued before, ω = ω 11
ab maps into the RR 2-form

flux G
(2)
ab of type-IIA. So we get the non-trivial set of conditions:

ωx[µ5]x = 0
S1

−−→ ωx[π4]x = 0
Tx

←−−→

∫

γ2 ⊂π5

Hx = 0

M IIA IIB
)

S

ω11[µ5]11 = 0
S1

−−→

∫

γ2 ⊂ ν5

G(2) = 0
Tx

←−−→

∫

γ2 ⊂ ν5

G(3)
x = 0
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Other analogous conditions can be obtained by exploiting different M-theory embeddings,

M2-branes, S and T dualities. The interested reader should by now be able to work out

the details.

3.4 Consequences for the effective action

As in the case of the FW constraint, each of the new conditions derived above translates

into an important condition for the consistency of the effective action. This is somehow

obvious from the fact that they can be related via T and S dualities to the usual FW

constraint, or to the equivalent one [eq. (3.12)] in M-theory, which ensure the consistency

of the effective action. We will give here a couple of examples.

In the type-IIA theory, the condition

∫

γ4 ⊂ ν5

G(4) = 0 ,

forbids the existence of NS5-branes that wrap cycles with a non-trivial RR 4-form flux.

Indeed the BI for the NSNS 7-form (Poincaré dual to the NSNS 3-form H)

dH(7) +
1

2
G(4) ∧ G(4) = 0 ,

tells us that in the presence of a non-trivial G
(4)

flux the shift symmetry associated to the

axion B(6) gets gauged in the effective 4D theory, since

H
(7)
µabcdef = ∂µB

(6)
abcdef +

1

2
G

(4)
[abcdC

(3)
ef ]µ ,

and this requires the effective potential to have an exact shift symmetry. However, Eu-

clidean NS5-brane instantons can break in general such a symmetry via terms like

∼ exp

(

i

∫

ν5

B(6)

)

. (3.16)

As already seen in the case of the usual FW condition, eq. (3.16) just prevents this incon-

sistency from happening.

The common origin of the FW constraint and its dual is probably more evident in the

type-IIB theory, where S-duality is explicit. Consider an Euclidean D3-brane wrapping

some 4-cycle: in general this will determine a breaking of the shift symmetries associated

to the axion C(4), from the point of view of the lower-dimensional effective theory, via

terms [27]

∼ exp

[
∫

π3

(

J ∧ J + iC(4)
)

]

. (3.17)

On the other hand, the RR 5-form field strength reads

G
(5)
µabcd = ∂µC

(4)
abcd +

1

2
G

(3)
[abcBd]µ −

1

2
H[abcC

(2)
d]µ , (3.18)
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therefore if either H or G(3) (or both) are non-trivial on a 3-cycle, the axionic shift symme-

try of C(4) is gauged. For this not to clash with eq. (3.17), we need a constraint between

D3-branes and fluxes. One comes from the FW condition,

∫

γ3⊂π3

H = 0 , (3.19)

while the other is its S-dual version:
∫

γ3⊂π3

G(3) = 0 . (3.20)

We clearly need both of them not to run into inconsistencies. The latter constraints can

easily be obtained via T-duality from the type-IIA constraint in eq. (3.14). The general

derivation will be given in section 5 [see eq. (5.6)].

4. Brane instabilities and non-free branes

In the previous sections we focused our attention on free brane configurations and on the

consistency constraints arising from the BI for such configurations. As noticed in [17],

however, the FW anomaly-cancellation condition can be relaxed in the presence of branes

ending on the “anomalous” brane. In particular, a Dp-brane may support a non-trivial

H-flux on its world-volume if a number of D(p − 2)-branes proportional to H end on

the Dp-brane. This is because each D(p − 2)-brane behaves like a monopole source for

the localized BI [23, 24]. When the “anomalous” brane is localized in time, the process

corresponds to the decay of N D(p − 2)-branes into N units of H-flux via an instantonic

Dp-brane supporting the NS flux. This process [17] is also called MMS-instanton decay. In

general, if π(p−2) is the space wrapped by a D(p− 2)-brane, and H a NS flux orthogonal to

the brane (namely [π(p−2)]∧H = 0), then if there exists a Euclidean Dp-brane supporting H

and containing the D(p−2)-brane itself, the latter may be unstable against MMS-instanton

decay. Notice that such condition corresponds to requiring that

[π(p−2)] = H ∧ [πp] = dH [πp] , (4.1)

i.e. that the D(p − 2)-brane does not wrap a trivial cycle [see eq. (2.4)] in the twisted

cohomology constructed with the external derivative operator dH . It is easy to guess the

answer when also geometrical fluxes are added (see also [44]), namely

[π(p−2)] = ω[π′
(p−2)] + H ∧ [πp] = D

∑

q

Q
(p−2)

(πq) . (4.2)

Analogously, for the FW condition we can derive the constraint (4.1) from M-theory.

Consider again the M-theory embedding of a D6-brane, namely a KK6-monopole, and

perform the reduction of the BI for F (4) on a Taub-NUT background, this time in the

presence of a M5-brane. The 11D BI reads

dF (4) = [µ5] . (4.3)
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The decomposition of the 4-form in terms of harmonic forms of the Taub-NUT background

was given in section 3.1, we can do the same for the 11D 5-form [µ5] dual to the M5-brane,

[µ5] = [π4] − ξ(1) ∧ [ν5] + ξ(2) ∧ [π⊥
4 ]θφ + . . . , (4.4)

where as before we keep only the relevant components. The first term in the decomposition

arises when all five indices of [µ5] are in the KK6 world-volume: this means that the M5-

brane wraps the 11th dimension, so that from the 10D point of view it is a D4-brane π4.

The second term, on the other hand, does not wrap the 11th dimension and corresponds

to a NS5-brane in type-IIA. For the last term, finally, notice that ξ(2) contains the factor

dV of eq. (3.2), so that the M5-brane extends in the radial direction r and in the fibered

direction ξ(1) of the monopole: this corresponds to a D4-brane ending into the D6-brane.

If we now look at the reduction of the BI (4.3) and project over the basis of forms, we get

dG(4) = [π4] , dH = [ν5] , dF + H = [π⊥
4 ]θφ . (4.5)

As expected, the RR and NSNS BI get localized contributions from the corresponding

sources. As anticipated, also the localized BI on the D6-brane gets a localized contribution,

from D4-branes ending on the D6-brane. The integrability condition of this BI is thus

modified: a D6-brane can support N units of H-flux, as long as there are N D4-branes

ending on it.8

Analogously to the derivation of the generalized FW conditions from M-theory, we can

now perform the type-IIA limit on eq. (4.3), by identifying as 11th dimension a different

direction in the world-volume of the KK6-monopole. If we do this, the l.h.s. of eq. (4.3) is

expanded as in eq. (3.6), while [µ5] reads:

[µ5] = [π4] − η ∧ [ν5] − ξ(1) ∧ [π4]ξ + ξ(2) ∧ [π⊥
4 ]θφ + . . . , (4.6)

where [π4] and [ν5] correspond to a D4-brane and a NS5-brane wrapping the fibered circle

of the KK5-monopole, [π4]ξ is a D4-brane localized on the ξ(1) direction and, as in the

previous example, [π⊥
4 ]θφ is a D4-brane that ends on the tip of the KK5-monopole. So,

finally, the 11D BI gives

dG(4) = [π4] , dG
(4)
ξ = [π4]ξ , dH = [ν5] , dK(2) + G

(4)
ξ = [π⊥

4 ]θφ . (4.7)

Besides the usual BI for RR and NSNS fields, we get also a modification for the BI of

the 3-form localized on the KK5-monopole, coming from D4-branes ending on the KK5-

monopole. Therefore the constraint of eq. (3.9) can be relaxed, i.e. a KK5-monopole can

support a G
(4)
ξ -flux with one leg on the fibered circle, if D4-branes that end on the monopole

are added. This also means that D4-branes may be unstable in the presence of a RR-flux,

8Actually, the ξ(2) form in eq. (4.4) has also a (r, ξ) component, which corresponds to a M5-brane

extending along the (θ, φ) directions, i.e. a NS5-brane wrapping the 2-sphere surrounding the monopole.

From the 10D point of view its contribution to the localized BI corresponds to the fact that the NS5-brane

screens the D6-brane from the H flux. Since there is nothing new in this configuration we will neglect this

component of ξ(2) here and in the following.
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via a MMS-like instanton process involving a KK5-monopole. This process has a nice

geometrical interpretation: the decaying D4-brane wraps the 1-cycle ξ(1), which is the

fibered circle of the KK5-monopole; because of this the cycle is trivial, the D4-brane may

unwind passing through the tip of the monopole [46] and shrink to zero size. What is left

is just flux by conservation of RR charge.

We can now T-dualize our brane and flux setup along either of the two directions η

and ξ(1). The result for the integrability conditions is, schematically:

dF (4) = [µ5]
S1

ξ
−−→

∫

γ3⊂π6

H = N⊥
D4

Tη
←−−→

∫

γ3⊂π5

H = N⊥
D3

M IIA IIB
)

S

dF (4) = [µ5]
S1

η
−−→

∫

γ3⊂κ5

G
(4)
ξ = N⊥

D4

Tξ
←−−→

∫

γ3⊂ν5

G(3) = N⊥
D3

where N⊥
Dp stands for the number of Dp-branes ending on the ‘anomalous’ brane. Therefore

also for the MMS-instanton process we get its S-dual version. Since together with the FW

condition the MMS decay can be seen as defining some cohomology (actually a K-theory),

the fact that we get for both conditions an S-dual version seems to suggest that also for the

RR sector there must be some sort of cohomological/geometrical interpretation, although

at the moment we ignore in which form.

We can extend the discussion to other configurations of fluxes and branes and find

analogous constraints and decay processes. In section 5 we will present the general method

to derive the constraints directly from the bulk BI in 10D theories, which may be used to

get the relevant conditions in a generic setup.

4.1 MMS instantons and interpolating domain walls

MMS-like configurations play an important rôle when dealing with domain walls interpo-

lating between two string vacua (see e.g. [11]). Consider the 10D space to be the product of

the four-dimensional space-time and a compact six-manifold, i.e. R
(1,3) × X6. A Dp-brane

that extends along time and two out of the three non-compact directions is a domain wall

from the 4D point of view. Such brane will then wrap a (p− 2)-cycle of X6 and will source

a flux for the RR G(8−p) field strength. At distances larger than the typical size of X6, the

flux will be directed towards the non-compact direction orthogonal to the domain wall, so

that the latter will produce a jump of the G(8−p) flux, polarized along the (8 − p)-cycle

dual to the (p − 2)-cycle of the brane, between the two regions divided by the wall. The

domain wall can thus interpolate between two string vacua with different G(8−p) flux, the

difference being determined by the Dp-brane tension.

If the G(8−p) flux is not constrained by BI this is the end of story. In this way, for

instance, we can interpolate between the different type-IIA AdS4 vacua of [21] with different

values of the moduli by considering D2 or D4 (wrapped on a 2-cycle of X6) domain walls,

which make the unconstrained G(6) and G(4) fluxes jump.

A more interesting situation arises when the domain wall sources a flux that is con-

strained by tadpole cancellation conditions. In this case the domain wall cannot just source

a flux, it must also source branes! Indeed, since the tadpole cancellation condition relates
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ND6
N’D6

D6

G (0)

X6

H

NS5

H’ H

Figure 1: NS5 domain wall interpolating between two vacua of massive type-IIA. The RR BI in

eq. (4.8) requires that the discontinuity of the NSNS flux produced by the NS5 (∆H = H − H ′ =

QNS5) be compensated by a discontinuity in the number of D6-branes ∆ND6 = ND6 − N ′

D6 =

G(0)∆H . Therefore ∆ND6 = QNS5G
(0) must end on the NS5-branes as required by the cancellation

of the ‘anomaly’ (2.19), see also eq. (5.10).

the number of branes to the units of flux, if the latter jump across the wall, the number

of branes must also jump in order to preserve the BI on both sides of the wall. This

phenomenon is enforced by imposing also localized BI. We illustrate this case with an

example.

Consider the type-IIA vacua introduced before. The configuration of branes and fluxes

will in general satisfy the RR BI:

dG(2) + ωG(2) + HG(0) =
∑

D6/O6

[π6] . (4.8)

A D8-brane that wraps the whole X6 behaves in 4D as a domain wall that makes the

flux G
(0)

jump by one unit. This means that the number of D6-branes must jump by

H-units in order to preserve eq. (4.8). Notice however that a D8-brane wrapping the whole

X6 will suffer a FW anomaly because of the H-flux. For the anomaly to be cancelled,

H D6-branes must end on the D8-brane, making eq. (4.8) consistent on both sides of the

wall. Analogously, we can use a D6-brane wall, sourcing a jump of G(2) flux, but failing to

satisfy the closure condition (2.17), and require ω D6-branes to end on it [44].

The same arguments can now be applied for NS5 and KK5 domain walls, which orig-

inate jumps of the H and ω fluxes, respectively: these are inconsistent in the presence of

RR-fluxes, unless D-branes are allowed to end on the domain walls (see e.g. figure 1).

Analogously in type-IIB, D5 and NS5 domain walls, which source a jump in the G(3)

and H fluxes respectively, may be used to interpolate between different IIB vacua. An

explicit example already exists [45]. Since these branes are anomalous in the presence of

non trivial H and G(3) fluxes on their worldvolume, D3-branes must end on them. The

actual number of D3-branes needed to restore consistency of the BI is just the right one to
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satisfy the RR tadpole cancellation condition on the vacua on both side of the wall, namely

H ∧ G
(3)

=
∑

D3/O3

[π3] . (4.9)

The connection between flux-constraints, bulk BI and branes ending on branes can be

made clearer by re-deriving the various conditions with another method that we will now

discuss in the next section.

5. General constraints from bulk BI

In this section we present a full derivation of the various constraints, both for free branes

(FW-like) and for non-free branes (MMS-like), which uses the bulk BI of the 10D effective

actions, implementing the method sketched in section 2.

A Dp-brane in 10D is a codimension-(9 − p) object that sources a flux for the RR

G(8−p) form on the (8 − p)-sphere surrounding it.9 We consider now the BI for G(10−p),

dG(10−p) + H ∧ G(8−p) =
∑

q

Q(p−2)(πq) , (5.1)

calculated on a (11 − p)-dimensional closed manifold, S(8−p) × γ3, defined as the product

of the (8− p)-sphere supporting the flux and a generic 3-cycle γ3 (if it exists) in the world-

volume of the Dp-brane. If the brane is isolated, we can always choose the S(8−p) so that it

does not intersect any other object. In particular, in the absence of D(p−2)-brane charges,

the BI (5.1) gives the condition

0 =

∫

S(8−p)×γ3

(

dG(10−p) + H ∧ G(8−p)
)

∝

∫

γ3

H , (5.2)

which corresponds to the well-known FW anomaly-cancellation condition of eq. (2.10).

Exactly the same steps can be performed in the case of a NS5-brane, to derive the

condition of eq. (2.19). In this case we have an H flux on the S3 surrounding the NS5-

brane. We can then calculate the BI (5.1) on S3 × γ(8−p), where γ(8−p) is a (8− p)-cycle in

the NS5 world-volume, and get

0 =

∫

S3×γ(8−p)

(

dG(10−p) + H ∧ G(8−p)
)

∝

∫

γ(8−p)

G(8−p) ,

⇒ [ν5] ∧ G = 0 ,

which is exactly eq. (2.19).

Finally, in the case of the KK5-monopole we can surround the monopole with an S2

that supports the geometrical flux ωξ ∝ dV ξ. Because of the geometrical flux, the BI (5.1)

9For simplicity, we will restrict our discussion to the case in which branes are away from singularities,

such as orbifold fixed points and orientifold planes.

– 22 –



J
H
E
P
1
1
(
2
0
0
7
)
0
8
2

receives an extra torsion contribution. If we now integrate it over S2×γ(7−p), where γ(7−p)

is a (7 − p)-cycle in the KK5 world-volume, we get

0 =

∫

S2×γ(7−p)

(

dG(8−p) + ωξG
(8−p)
ξ + H ∧ G(6−p)

)

∝

∫

γ(7−p)

G
(8−p)
ξ , (5.3)

⇒ [κ5]
ξ Gξ = 0 , (5.4)

which coincides with eq. (2.20).

Before turning to the case of branes ending on other branes, we discuss the last type of

conditions involving RR fluxes and Dp-branes, such as the one in eq. (3.14). Indeed, there

is another non-trivial BI we can use, the one associated to the NS 7-form H(7), magnetic

dual of H:

dH(7) +
1

2

∑

p

G(p) ∧ G(8−p) = Q(ν1) , (5.5)

where Q(ν1) is the charge associated to the fundamental string (NS1-brane). In the presence

of a Dp-brane we can integrate eq. (5.5) over S(8−p)×γp, where as before S(8−p) is a sphere

surrounding the D-brane and γp is a p-cycle in the brane world-volume. We thus get

0 =

∫

S(8−p)×γp

(

dH(7) +
1

2

∑

q

G(q) ∧ G(8−q)

)

=

∫

γp

G(p) , (5.6)

which in the special case p = 4 gives eq. (3.14).

We can now discuss non-trivial configurations with branes ending on other branes. We

discuss first the Dp-brane case in detail. As will become clear in a moment, the other cases

follow analogously. Basically, we want to repeat the step of the first example in this section

in the presence of a D(p − 2)-brane ending on the Dp-brane. Eq. (5.2) will now get also a

non-trivial contribution from D(p − 2)-branes

N⊥
(p−2) ≡

∫

S(8−p)×γ3

[π(p−2)] =

∫

S(8−p)×γ3

(

dG(10−p) + H ∧ G(8−p)
)

∝

∫

γ3

H . (5.7)

N⊥
(p−2) is indeed the intersection number of our D(p − 2)-brane with S(8−p) × γ3, which

counts the number of D(p − 2)-branes ending on the Dp-brane minus the number of those

leaving from the Dp-brane that are orthogonal to the polarization of H, namely

Np

∫

γ3

H = N⊥
(p−2) , (5.8)

where Np = G
(8−p)

∧[S(8−p)] is the number of Dp-branes sourcing the flux G
(8−p)

. Schemat-

ically the branes and the fluxes are embedded as follows

γ3 × R
p−2 × R × S(8−p)

Dp Dp G(8−p)

H D(p − 2) D(p − 2)

.
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S’ (8−p)

Dp

D(p−2)
G

(10−p)

S’
  (8−p)

Figure 2: A D(p − 2)-brane ends on a Dp-brane supporting a H flux on its worldvolume (not

shown in the figure). The (8− p)-sphere surrounding the Dp-brane and supporting its RR flux has

a boundary with a non trivial RR flux (G(10−p)) from the D(p− 2)-brane that compensates for the

‘anomalous’ contribution to the BI, as discussed in the text.

We thus recovered eq. (4.1), i.e. the fact that a Dp-brane may support N units of H-flux

as long as N D(p − 2) branes end on it, or equivalently N D(p − 2)-branes in the presence

of N-units of (orthogonal) H flux may decay into an instantonic Dp-brane supporting the

H flux. The derivation could also be done by integrating the BI over S′(8−p) × γ3, where

S′(8−p) is the (8 − p)-sphere surrounding the Dp-brane without the point of intersection

with the D(p− 2)-brane. In this case there is no contribution from the [π(p−2)] term of the

BI, but the manifold S′(8−p) × γ3 has now a non-trivial boundary (see figure 2). It is easy

to check that the term dG(10−p) gives the missing contribution
∫

S′(8−p)×γ3

dG(10−p) =

∫

∂S′(8−p)×γ3

G(10−p) = N⊥
(p−2) . (5.9)

The case with NS5-branes and RR-fluxes can be discussed in the same way. In this

case we get the following consistency condition

N5

∫

γ(6−p)

G(6−p) = N⊥
p , (5.10)

where now N5 is the number of NS5-branes, γ(6−p) is a (6 − p)-cycle contained in the NS5

and N⊥
p is the number of Dp-branes ending on the NS5-branes and whose world-volumes

have non-trivial intersection number with γ(6−p) (in other words, the flux G(6−p) must

be polarized orthogonally to the Dp-brane). We thus get the striking result that a Dp-

brane can be unstable also in the presence of RR-fluxes. For example, in massive type-IIA

compactifications (G
(0)

6= 0) D6-branes may decay into instantonic NS5-branes. With a

G(2) flux, D4-branes may decay via instantonic NS5-branes, and so on.

– 24 –



J
H
E
P
1
1
(
2
0
0
7
)
0
8
2

Analogously, for KK5-monopoles we must add the contribution from Dp-branes ending

on the monopole, and eq. (5.3) becomes in this case

N⊥
p ≡

∫

S(2)×γ(7−p)

[πp] =

∫

S(2)×γ(7−p)

(

dG(8−p) + ωξG
(8−p)
ξ + H ∧ G(6−p)

)

∝

∫

γ(7−p)

G
(8−p)
ξ ,

(5.11)

where N⊥
p is the intersection number of Dp-branes with S(2) × γ(7−p), i.e. the number of

Dp-branes ending on the monopole, wrapping the fibered circle ξ and orthogonal to the flux

G
(8−p)
ξ , which as before is taken to be polarized along the world-volume of the monopole

(namely on γ(7−p)). We thus have

NK

∫

γ(7−p)

G
(8−p)
ξ = N⊥

p , (5.12)

where NK is the number of KK5. So we get that a KK5 may support a RR flux over

its world-volume and the fibered circle as long as there are D-branes ending on it, and

equivalently Dp-branes may decay via a KK5 instanton if they wrap a circle that is shared

by a RR flux which is otherwise polarized orthogonally to the brane. In this case it is

possible to understand the process in geometrical terms: the circle wrapped by the D-

brane gets trivialized by the KK5 instanton, the D-brane may unwrap the circle passing

through the tip of the monopole/instanton as described in [46], the D-brane is thus allowed

to shrink to zero size and annihilate, the RR flux guarantees the conservation of charge.

Finally, it is now easy to guess what happens with eq. (5.6): Dp-branes may support N

units of G(p) fluxes as long as N fundamental strings end on the D-brane, and analogously

N fundamental strings may decay in the presence of N units of RR fluxes G(p) via Euclidean

Dp-brane instantons. This type of configurations have already been discussed in the context

of the holographic correspondence in [47].

6. Conclusions

In string compactifications, the simultaneous presence of fluxes and localized sources is

highly constrained by Bianchi identities. Besides the usual RR and NSNS tadpole can-

cellation conditions, corresponding to Gauss’ law for brane charges, additional localized

constraints arise when fluxes and localized sources are simultaneously present. In this pa-

per we derived some new localized constraints that can be interpreted as a generalization

of the Freed-Witten anomaly-cancellation condition. We showed that all these localized

constraints are related by a web of string dualities and can be derived directly from M-

theory compactifications, where their geometrical nature is more manifest. We discussed

their importance for the consistency of the lower-dimensional effective theory, stressing that

they enforce gauge invariance of the effective action when fluxes and branes are simultane-

ously present, and that they may be relevant for protecting the flat directions, associated

with the axionic symmetries gauged by fluxes, from instanton corrections arising from Eu-

clidean branes. We also studied the possibility of relaxing these localized constraints in

the presence of branes ending on other branes. This case can be relevant for the study of
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interpolating solutions in the landscape (see e.g. [11, 48] for recent discussions and refer-

ences to earlier work), since the latter allow to connect vacua with a different number of

branes and a different content of fluxes. In analogy with the known case, where a FW-

anomalous instantonic brane can trigger decays of D-branes in the presence of H flux, we

found that both D-branes and NS-branes may decay in the presence of NSNS as well as

RR fluxes, which may be relevant for the study of the non-perturbative (in)stability of

non-supersymmetric vacua.

There are a number of aspects that could deserve further study. For example, we did

not discuss the extension to non-trivial magnetic fluxes, which by affecting the RR charge

of the brane may modify the localized BI, changing the structure of the local constraints

and possibly allowing new decay processes. Another aspect that can be analyzed is the

effect that these new consistency conditions have on actual string compactifications, in

particular how strong is the constraint on the interplay of the various sources for moduli

potentials, such as fluxes, branes and non-perturbative effects. We have shown indeed

that the new localized BI are crucial for the consistency of the effective action when fluxes

and branes are both present. We have also shown, however, that the constraints may be

relaxed by just adding some other localized sources ending on the ‘anomalous’ brane. It

would be interesting to understand in detail how this translates into the lower-dimensional

theory, whether for example it corresponds to adding some new degrees of freedom to

the effective field theory that restore gauge invariance. Finally, it would be interesting to

understand whether there is a general way of classifying all the possible constraints and

allowed setups, since it would give an extra tool to characterize the underlying structure

of the string landscape.
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[48] C. Kounnas, D. Lüst, P.M. Petropoulos and D. Tsimpis, AdS4 flux vacua in type-II

superstrings and their domain-wall solutions, JHEP 09 (2007) 051 [arXiv:0707.4270].

– 29 –

http://jhep.sissa.it/stdsearch?paper=07%281998%29006
http://arxiv.org/abs/hep-th/9805112
http://jhep.sissa.it/stdsearch?paper=09%282007%29051
http://arxiv.org/abs/0707.4270

